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Background
The budding yeast Saccharomyces cerevisiae is a widely used model organism to under-
stand basic molecular processes in eukaryotic cells. Over the past decades, the develop-
ment of new genetic techniques enabled the creation of comprehensive clone and gene 
deletion libraries in yeast. These libraries can be used for many different high-through-
put experiments, such as synthetic lethality and synthetic dosage lethality screens [1–3], 
chemical genetic screens [3], and yeast two-hybrid and Synthetic Physical Interaction 
screens to unravel unknown protein–protein interactions [4, 5]. Although investigating 
different research aspects, the common read-out of these screening methods is colony 
growth on solid media. Libraries are typically organised in arrays of 96, 384 and 1536 
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colonies per plate and the colony size of experimental and control conditions are com-
pared to determine growth effects. Library-based screens efficiently generate robust and 
large datasets in a short time, however, data analysis can be challenging, and merely vis-
ual comparison of colonies lacks normalisation of plate differences and is highly subjec-
tive. Quantitative data analysis of colony growth can be used to define the strength of 
growth defects in an unbiased manner. Colony size can be quantified using tools such 
as ImageJ, HT Colony Grid Analyser, CellProfiler, gittr or Spotsizer [6–9], but these 
have limited capacity for downstream analysis. Other tools which allow more sophisti-
cated data analysis include proprietary tools such as PhenoBooth Colony Imager (Singer 
Instruments Ltd, UK), or the ScreenMill software suite. The ‘DR engine’ and ‘SV engine’ 
of the ScreenMill software suite were developed to facilitate statistical analysis and 
offered web-based applications which allowed reviewing and visualising of screening 
data [6]. However, ScreenMill was designed to compare each experimental plate to a sin-
gle control. Assays that compare experimental plates to two controls, such as Synthetic 
Physical Interaction screens, require further data processing, which is laborious and can 
lead to errors. Furthermore, the ScreenMill web application is currently not accessible 
and the software is composed of different programming languages making it difficult to 
run the analysis for inexperienced data analysts.

To simplify the analysis of plate-based high throughput screens, we have developed 
ScreenGarden, a shinyR application [10] for statistical analysis of screen-based assays, 
which compares colony growth of experimental and control plates independent of 
ScreenMills’ ‘DR engine’ and ‘SV engine’. ScreenGarden can be run as a web application 
or offline using RStudio [11], which makes it also very easy to adjust and customise the 
script. ScreenGarden is further developed to facilitate screen analysis which compare 
experimental plates to two independent controls. Furthermore, ScreenGarden allows 
direct quality control of screens and plotting of data without exporting the output files 
into other data analysis software. At the same time, ScreenGarden produces the raw 
numbers behind each step of data analysis enabling more sophisticated data interpreta-
tion downstream for users who require this.

Implementation

The ScreenGarden application was designed to enable statistical analysis of plate-
based assays using colony size as a readout, by comparing colonies from experimental 
plates to colonies of control plates. The arrangement of strains on these two plates 
must be identical, i.e., the same strains must be in the same positions on the control 
and experimental plates. Data analysis using ScreenGarden can be performed in one 
step if there is a single control condition for each experiment (Fig.  1). Log growth 
ratios (LGRs) and Z-scores are calculated for a single control using the ‘CalculateL-
GRs’ command. The user can download a ‘mean file’ which averages the data over the 
number of replicates, or a ‘replicates file’, which contains the separate data of each 
individual replicate. Additionally, ScreenGarden can combine data from experiments 
that use two independent controls using the ‘Combine2controls’ tab; the compari-
sons to two different controls are combined and downloaded as a ‘merge file’. Finally, 
the data can be plotted automatically for analysis and quality control, and plots can 
be directly downloaded from the website. The ScreenGarden app can be run either 
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online (via https://​scree​ngard​en.​shiny​apps.​io/​scree​ngard​enapp/) or offline as an 
R script. The online version provides a straightforward interface with instructions 
and a short introductory video to provide an example of how to use the software. 
Users who would prefer to run the script in a local environment can download the 
R script and run this via an R package, such as Rstudio. Advantages of using the R 
script offline include the ability to modify the code if required for specialist analysis 
or to run the software without reliance upon the shinyapp.io web hosting service. A 
detailed description of how to use the ScreenGarden web application can be found in 
the appendix (Additional file  1) or downloaded from the ScreenGarden homepage. 
We have further included a video guide to explain the steps of ScreenGarden analy-
sis and how to download the code, if the user wishes to deploy ScreenGarden offline 

Fig. 1  Steps of data analysis using ScreenGarden. The ScreenGarden application offers a tool for stepwise 
analysis of plate-based high-throughput screens and was specifically adapted to facilitate the analysis of 
screens with one or two independent controls. The ‘Calculate-LGRs’ script performs statistical analysis of 
colony sizes compared to a single control. After statistical analysis, the data can be downloaded as a ‘mean 
file’, which contains the average data of replicates, or as a ‘replicates file’, which contains all data of individual 
controls. The ‘mean file’, or a ‘merge file’ which is generated by combining the datasets of two independent 
controls, can be uploaded and plotted for quality control and data visualisation using the ‘Plots’ tool. In 
addition, the user can choose to define cut-off thresholds using the ‘Mixture Model’ tool

https://screengarden.shinyapps.io/screengardenapp/
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using RStudio. These video guides can be viewed on the Thorpe lab website: https://​
www.​thorp​elab.​org/​scree​ngard​en.

Here, we applied ScreenGarden analysis to previously published data from genome 
wide Synthetic Physical Interaction screens [12] to compare this software with another 
established method. Synthetic Physical Interaction screens rely on a GBP-GFP binding 
system to forcibly associate GBP-tagged proteins to the yeast proteome [5] and a nega-
tive impact on cell-growth upon protein–protein interaction is defined as a Synthetic 
Physical Interaction.

Results
Comparison of experimental and control colony sizes

ScreenGarden analysis can be performed with different array sizes (384 and 1536 colo-
nies on each plate) and a replicate number of 1, 4 or 16 colonies per yeast library strain. 
The software requires a ‘Log file’ and a ‘Key file’ as input files. Here, we used ScreenMills’ 
CM Engine to measure colony sizes on plate, which automatically produces a ‘Log file’ as 
a list of colony sizes ordered by plate position (starting from A1, A2, A3 … H12 for 96 
colonies on plate, Additional file 2). Other software tools, such as HT Colony Grid Ana-
lyser, can be used to measure colony sizes on plate, but files have to be converted to the 
specified format (Additional file 3). The ‘Key file’ contains information about the yeast 
library and assigns the genotype of each strain to its specific plate position (Additional 
file 4). It is necessary that both, ‘Log file’ and ‘Key file’ are in the format as shown in the 
examples and that the files are uploaded into ScreenGarden as tab-delimited or comma-
separated files. Here, we applied ScreenGarden analysis to Synthetic Physical Interaction 
screen data with the outer kinetochore subunit Dad2 (Additional file 5). In this screen, 
GBP-tagged Dad2 was recruited to 6234 different GFP-strains and the screen was per-
formed in 4 replicates, 1536 colonies on a total of 17 plates. First, colony sizes are nor-
malised by the plate median to correct for plate specific effects on growth. Median plate 
correction is important to prevent false-positive growth defects which might occur due 
to differences in nutrition, humidity and other external factors [13] (Fig. 2A, B). How-
ever, for screens with a high number of growth defects, median-normalisation should be 
omitted, as a low median colony size might reflect an experimentally valid negative effect 
on growth. If more than half of the  experimental colonies on a plate are affected, the 
median colony size of the plate will represent the size of affected colonies rather than the 
ones insensitive to the treatment or condition. Alternatively, the data can be normalised 
to the median growth value of positive control colonies located at specific positions on 
the plate which have to be identified as ‘Control’ in the identifier (ID) column in the ‘Key 
file’. A second difficulty for plate-based screens are spatial anomalies within a plate array. 
Colonies often grow faster at the plate periphery (Fig. 2C) as there is less competition for 
nutrients [14, 15]. We have incorporated a simple smoothing algorithm from Ólafsson 
and Thorpe [5], which adjusts colony sizes based on their plate position to counteract 
spatial anomalies across the plate. Incorporating the smoothing algorithm into Screen-
Garden analysis successfully limits spatial effects (Fig. 2F). Smoothing is optional and, as 
for median-corrected plate normalisation, should only be selected if most colonies are 
not affected in growth on experimental plates. After median-correction and smoothing, 
LGRs are calculated separately for each replicate of each strain on each plate. The LGR is 

https://www.thorpelab.org/screengarden
https://www.thorpelab.org/screengarden
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the natural logarithm of the ratio of the control colony size divided by the experimental 
colony size. The difference between the control and experimental replicates is evaluated 
by applying a Student’s t-Test to generate a p-value  for each comparison. To compen-
sate for false positive growth defects, which naturally occur in large-scale screens, 
these p-values are adjusted using a false discovery rate (FDR) correction method after 

Fig. 2  Median correction of colony sizes reduces the influence of plate differences. A External factors and 
discrepancies in pinning can result in differences in colony growth between plates. The mean LGRs organised 
by plate without median correction are plotted. B Correction of colony sizes using the plate median 
counteracts these plate differences, median correction data from A is plotted. C A heatmap shows spatial 
anomalies of colony sizes on plate especially at the plate periphery. Red squares indicate a colony size greater 
than the plate median and blue squares highlight smaller colonies. The inset shows an example of the raw 
data. D–F Mean LGRs are plotted against the yeast library with the data organised on the x-axis, by plate, 
row and column to highlight the impact of plate differences and spatial anomalies. Including the spatial 
smoothing algorithm further abolishes any differences based on colony position on plate
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Benjamini and Hochberg [16], resulting in more conservative q-values. For both, p-val-
ues and q-values, the negative natural logarithm is determined, which is useful for gen-
erating Volcano plots which compare LGRs against their p- or q-values. Subsequently, 
mean LGRs are determined as the average of the 4 or 16 replicate LGRs. Finally, Z-scores 
for each mean LGR are calculated, which can be used to assess growth defects.

The ‘CalculateLGRs’ tool produces two output files, a ‘replicates file’ where each rep-
licate is listed independently, and a ‘mean file’ which contains the averaged LGRs and 
Z-scores of the replicates combined. Both files can be downloaded directly from the 
website as ‘.csv’ files and easily imported into R, Excel and other applications for data 
analysis.

Combining two independent controls

The second, optional step of screen analysis using ScreenGarden is the ‘Combine2con-
trols’ tool, which is designed for plate-based screens with two independent controls 
(Fig.  3A). After separately running the ‘Calculate LGRs’ script with each control, the 
resulting two ‘mean files’ can be uploaded and joined to a single ‘merge file’. The ‘merge 
file’ includes all the information from the single control analyses and further includes the 
mean LGRs and Z-scores and the maximum of p- and q-values from both controls. We 
chose the maximum p or q-value from both independent control datasets as a measure 
for significance rather than calculating combined p- and q-values using Fisher’s method 
[17], since the data originates from a single experimental dataset with different controls 
and the two p- and q-values are not truly independent. The maximum q-value should 
not be considered a measure of statistical likelihood for mean LGRs of two controls, 
but rather facilitate the identification of false positive growth defects based on pinning 
errors. The ‘Plots’ function of ScreenGarden allows these data to be compared, for exam-
ple to compare the LGR values produced by the two controls. For example, for a Dad2 
Synthetic Physical Interaction screen dataset, 18.2% (control 1) or 29.2% (control 2) of 
observed growth defects from single control comparisons were excluded using the aver-
age LGR (Fig.  3B, C). Hence, ScreenGarden automatically defines a set of high confi-
dence growth defects for screens based upon two independent controls.

Quality control using ScreenGarden

ScreenGarden can be used to plot results directly without laborious reimporting and 
reformatting in a different application, such as R or Excel. Using the ‘Plots’ tab, either the 
‘mean file’, if experiments are compared to one control, or the ‘merge file’, if the screen 
was performed using two controls, can be uploaded and any two columns can be plotted 
against each other. Plotting is useful for quality control of screen data, and for example, 
it allows users to assess the data plate by plate to identify whether any plates produced 
anomalous LGR values (Fig. 4A). Since the data can be plotted by Row or Column, the 
data can be scrutinised to ask whether the smoothing algorithm efficiently reduced spa-
tial effects, i.e. whether or not specific rows or columns have higher or lower LGR values 
(Fig. 4B, C). In the ‘Plots’ function the distribution of LGRs is automatically visualised 
in a histogram with an adjustable number of bins (Fig. 4D). Plotting mean LGRs against 
the negative natural logarithm of p- or q-vales respectively allows for rapid assessment 
of reproducibility, as high p-/q-values account for a large difference in replicate colony 
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sizes. Hence, strains that have inconsistent replicates in the data can be easily identified 
and if necessary, excluded from further analysis. Only three Synthetic Physical Interac-
tions of the Dad2 dataset were above the q-value threshold of 0.05. We used Screen-
Garden to analyse Synthetic Physical Interactions with the nucleolar protein Nop10, a 
second dataset from Berry and colleagues [12] (Additional file  6). Nop10 association 
caused a higher number of growth defects compared to the Dad2 dataset, and we found 
19 growth defects with a q-value above the threshold (Fig. 4F). Notably, strains with a 
low value for − lnQ vary in replicate colony sizes (Fig. 4G). We compared these growth 

Fig. 3  Combining analyses with two independent controls using ScreenGarden. A The raw data (plate 
images) from two control plates to the same experimental plate are shown together for one 1536 density 
plate with four replicates per strain. Control-specific hits are highlighted in red (control 1) and blue (control 
2) boxes respectively. B The LGR values for comparing the experiment independently with each control 
are plotted. The dashed line visualises the empirical cut-off value of LGR ≥ 0.4 for the average LGRs of both 
control comparisons. C These data are shown as a Venn diagram, with the dashed circle indicating all data 
with an average LGR (of the two controls) ≥ 0.4. Using two controls rather than one defines a subset of 
high-confidence growth defects and excludes control-specific effects
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Fig. 4  Quality control of plate-based screens using ScreenGarden. Using the ‘Plots’ tab, users can upload.
csv files downloaded from ‘ClaculateLGRs’ or ‘Combine2Controls’ and plot any column against each other. 
For quality control, mean LGRs were plotted against plate (A), row (B) and column (C) number. D Histogram 
showing the distribution of data. The majority of LGRs are distributed close to zero. The red dashed line 
highlights a LGR of 0.04. E Negative max lnQ values were plotted against mean LGRs to identify replicate 
inconsitencies in the Dad2 Synthetic Physical Interactions dataset. The red dashed line highlights an LGR of 
0.04, the black dashed line indicates a max lnQ of 2.99 (q = 0.05). F Negative max lnQ values were plotted 
against mean LGRs to identify replicate inconsitencies in the Nop10 Synthetic Physical Interactions dataset. 
The data points labelled a to f, most with low max − lnQ values, are analysed in the next panel. G Selected 
growth defects (a to e from panel F) with a low max − lnQ value show inconsitencies in colony sizes on plate 
and 2 of them were identified as false-positive growth defects according to Berry and colleagues [12]. H 
Exclusion based on low max − lnQ values reduced the number of false-positive growth defects
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defects to the validation screens performed by Berry and colleagues, who identified 7 of 
these 19 interactions as false positive growth defects (Fig. 4G, H). Exclusion of growth 
defects based on high q-values decreased the false-discovery rate for the Nop10 screen 
by approximately 5% (Fig. 4H).

Comparing ScreenGarden and ScreenMill

Next, we compared the output of ScreenGarden analysis to a previously developed tool 
for statistical data analysis, the DR Engine of the ScreenMill software suite (6) (Addi-
tional file  7). The DR Engine calculates plate median normalised LGRs but does not 
automatically apply a smoothing algorithm, thus we first compared unsmoothed LGRs 
from both ScreenMill and ScreenGarden (Fig. 5A). As expected, the datasets are highly 
correlated (R2 > 0.99), but, notably, not identical. This observed variance might be due 
to ScreenMill’s automatic exclusion of control-dead colonies for one of the two controls. 
Control-dead colonies are not excluded in ScreenGarden, but plate normalised colony 
sizes are reported in the dataset. Since data exclusion is subjective, we allow the user to 
manually exclude data if the normalised control colony size is below a certain threshold 
(e.g., 30% of the plate median). A second explanation for the slight variation in data val-
ues of ScreenGarden compared to ScreenMill is the way LGRs are calculated. The LGRs 
are used as a measure of growth defect because if, as commonly assumed, the colony 
sizes are distributed according to a lognormal distribution then the LGRs will be dis-
tributed normally. ScreenMill calculates the LGR as ln(average control colony size/aver-
age experimental colony size) whereas ScreenGarden calculates the LGR for each colony 
compared to the equivalent position on the control plate before averaging across repli-
cates of the same genotype. This latter approach of applying the logarithm before averag-
ing is more accurate as an approximator of the mean LGR than applying the logarithm 
to the averaged values, since growth ratios are distributed according to a lognormal dis-
tribution and hence LGRs are distributed normally. This effect is generally small but can 
be significant when the variance between colony sizes is large. Next, we wanted to ana-
lyse the effect of automatic data smoothing. Using ScreenGarden, LGRs are smoothed 
before averaging and independently for each control, whereas ScreenMill’s DR engine 
did not include a smoothing algorithm, hence the data could only be smoothed manually 
after calculating mean LGRs of two controls. In order to demonstrate the advantage of 
incorporated data smoothing, we applied our smoothing algorithm to the unsmoothed 
ScreenMill output data and compared this to smoothed ScreenGarden data using four 
independent datasets (Fig.  5B–E). The smoothed data correlated well for each screen 
(R2 = 0.92–0.95), however, the variance was greater compared to unsmoothed data. 
Considering that the unsmoothed data correlated almost perfectly, this variance is likely 
based on the timepoint of smoothing. Last, we analysed the reproducibility of growth 
defects identified using ScreenGarden and ScreenMill. We compared mean LGRs ≥ 0.4 
to the results of validation screens performed by Berry and colleagues to distinguish 
between reproducible growth defects and false-positives (Fig. 5F). Both ScreenGarden 
and ScreenMill performed well in identifying growth defects in the majority of screens, 
hence we conclude that ScreenGarden analysis can be used to successfully identify 
reproducible growth defects at least as effectively as ScreenMill analysis.
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Defining cut‑offs for growth inhibition

Defining the right LGR value or threshold to identify a growth effect varies from 
screen to screen and is often subjective. However, the threshold choice is important 

Fig. 5  Comparison of ScreenGarden and ScreenMill. A Unsmoothed data of the Dad2 Synthetic Physical 
Interactions screen analysed with ScreenGarden and ScreenMill are compared. Regression (red line) and 
Pearson correlation were calculated using the stats 3.6.2. package in RStudio. B Smoothed data of the Dad2 
Synthetic Physical Interactions screen analysed with ScreenGarden and ScreenMill are compared. ScreenMill 
does not automatically smooth data, thus smoothing was performed using PERL based on mean LGRs [5]. 
Smoothed data of the C Nop10, D Hta2 and E Sec63 Synthetic Physical Interactions screens analysed with 
ScreenGarden and ScreenMill are compared. F Both ScreenGarden and ScreenMill analysis accounted for 
similar ratios of true growth defects and false-positives when compared to the validation screen data from 
Berry and colleagues [12]
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to prevent high rates of false-positives whilst at the same time allowing sensitive 
identification of growth defects. In this study, we used an empirical cut-off value of 
LGR = 0.4 to determine growth defects, as previously defined for Synthetic Physi-
cal Interaction screens [18, 19]. At LGR = 0.4, a growth defect is moderate but vis-
ible compared to control plates. However, ScreenGarden also offers mathematical 
approaches to define cut-off thresholds, based on the data distribution. ScreenGarden 
automatically calculates Z-scores, as Z-transformation fits a normal distribution to a 
dataset and uses the mean and variance of the data to define Z-scores for each data 
point. The region (− 1.96, 1.96) in Z-space represents 95% of the data in a normal 
distribution, hence a Z-score above ~ 2 accounts for the strongest 2.5% growth effects 
within the data. Z-scores have an advantage of allowing datasets to be compared even 
when they produce quantitatively very different growth effects. However, there are 
several problems with using Z-scores. First, growth data are typically not normally 
distributed and second when a normal distribution is applied to a large dataset, there 
will always be ~ 2.5% of the data with a Z-score > 2 regardless of whether any growth 
defects were present. Screens that result in some growth defects are likely to display 
a multimodal or fat-tailed distribution, which is characterised by a longer tail in the 
positive region of the distribution curve (Fig.  4D). In a previous study, Howell and 
colleagues have shown that proteome-wide screens such as Synthetic Physical Inter-
actions screens with a high number of growth defects can be described using bimodal 
normal mixture models [20–22]. Based on the mixture model, the data distribution 
is composed of two separate components 1 and 2 with distinct peaks (Fig. 6A). Com-
ponent 1 describes the central peak and contains unaffected strains with LGRs ~ 0, 
whereas component 2 or the ‘hit peak’ accounts for growth defects with higher LGRs. 
We have incorporated this script into ScreenGarden in the ‘Mixture Model’ tab, 
which enables the user to upload their previously calculated ‘mean file’ or ‘merge file’. 
The bimodal normal mixture model then calculates an FDR-adjusted q-value, with 
q(x) defined as the probability of inclusion in component 2, given a measured LGR 
of x. Hence, a q(x) = 0.5 is defined as cut-off point as LGRs are equally likely to be in 
component 1 or 2. We applied the mixture model fitting to Synthetic Physical Inter-
actions analysis of Nop10, as this screen resulted in a high number of growth defects 
(Fig. 6A, B) (Additional file 8). We found that q ≥ 0.5 accounted for Synthetic Physical 
Interactions with an LGR of approximately 0.22 or higher, with a Z-score of as low as 
1.3. This led to the identification of more than double the number of growth defects 
compared to Z-score or LGR-based cut-off definition, however, most of these addi-
tional growth defects were not included in validation screens by Berry and colleagues 
and thus it remains unclear if they are true growth defects or false positives (Fig. 6C). 
Our findings suggest that using a more conservative cut-off definition, like an empiri-
cal value for LGRs when growth is visibly affected, is useful for screens without addi-
tional validation to reduce false positives. In contrast, using the bimodal mixture 
model and subsequent validation screening can extensively increase the number of 
growth defects identified in screens.
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Discussion
In this study, we introduce ScreenGarden, a shinyR application for rapid statistical analysis 
pf plate-based high-throughput screens. We have shown that ScreenGarden analysis can 
be used to report reproducible high-confidence growth defects which are corrected for any 
potential environmental factors or errors in pinning. We have compared our software to a 
previously available tool for plate-based screen analysis, ScreenMill and have shown that 
ScreenGarden analysis can identify reproducible growth defects at least as well as ScreenMill.

Conclusion
ScreenGarden is a useful tool for easy, quick and robust analysis of plate-based high 
throughput assays and facilitates screen analysis that use two independent controls. Data 
can be plotted immediately without exporting output files into a second application for 

Fig. 6  Cut-offs can be defined based on the distribution of screen data. Screens which result in a high 
number of growth defects are more accurately described using a bimodal mixture model and are 
characterised by a ‘central peak’ and a second ‘hit peak’. Bimodal mixture models can be fitted automatically 
to screens with many growth defects using ScreenGarden and produce a component plot (A) and a fit plot 
(B) as well as q-values for each LGR. If q ≥ 0.5, the data is predicted to follow the distribution of component 
2 and thus LGRs account for predicted growth defects. C Mixture model, Z-transformation and empirically 
defined LGR cut-offs were compared for the Nop10 Synthetic Physical Interactions dataset. Cut-off definition 
using a bimodal mixture model predicted more than twice the number of growth defects compared to 
Z-transformation or LGR-based thresholds
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data visualisation, and ScreenGarden analysis does not require prior experience with 
handling of large-scale data. ScreenGarden is an open-source shinyR application. All code 
is written using RStudio and available for download from the ScreenGarden homepage 
or GitHub. Thus, ScreenGarden can be run not only as a web application but also locally 
using the open source RStudio software, which runs on Windows, Mac and Linux plat-
forms. This renders the possibility to adapt the code for screen-specific needs and easy 
customisation of the code. Although here we have only used ScreenGarden for the analy-
sis of SPI data, the software can be used for other analyses that compares plate-based data 
from experiments and controls. All ScreenGarden tools can be run independently, since 
the files are directly uploaded for each specific step. The normalisation and smoothing 
algorithms prevent biases due to plate differences or spatial anomalies, making Screen-
Garden a robust tool for data analysis. ScreenGarden can perform analysis within sec-
onds and provides data visualisation. Plots can be downloaded as PDF files for further 
preparation or directly incorporated into presentations or reports. Conclusively, Screen-
Garden provides an easy to use software tool for plate-based microbial screen analysis.

Yeast strains and methods

The data for validation (Figs. 4, 5, 6) were previously published [12]. The methods and 
strains are described in this publication, but briefly, the universal donor strain (UDS) 
is an ADE2+ RAD5+ derivative of W303 (can1-100 his3-11,15 leu2-3,112 ura3-1) 
unless otherwise indicated [23]. GFP strains are all based upon BY4741 (his3∆1 leu2∆0 
met15∆0 ura3∆0) [24]. Yeast were grown in standard growth medium including 2% 
(weight/volume) of the indicated carbon source [25]. Plasmids for SPI screens (encod-
ing GBP alone, protein alone or protein-GBP) were created using the gap-repair clon-
ing technique, which combines a linearized plasmid with PCR products using in  vivo 
recombination. All PCR products were generated using primers from Sigma Life Science 
and Q5 polymerase (New England Biolabs, USA). All plasmid constructs were validated 
using Sanger sequencing (Beckman Coulter Genomics, UK). The SPI screens utilised 
Selective Ploidy Ablation (SPA) methodology, a mating-based approach for yeast trans-
formation [26]. In the first step, SPI plasmid constructs were separately transferred into 
the UDS by transformation. Each of these strains is then mated individually to the col-
lection of GFP strains. These diploid cells are converted back to haploids by both desta-
bilizing and counter-selecting against all the UDS chromosomes. The resulting haploid 
colonies, containing the specific plasmids, are then assessed for growth by measuring 
colony size. All mating and copying of the yeast colonies were performed using a RoToR 
pinning robot (Singer Instruments, UK).

Availability and requirements

Project name: ScreenGarden.
Project home page: https://​scree​ngard​en.​shiny​apps.​io/​scree​ngard​enapp/.
R scripts available to download from the homepage or via GitHub: https://​github.​com/​
Cinzi​aK/​Scree​nGard​en.
Operating system: Platform independent or Mac, Windows, Linux for the standalone 
application using RStudio.

https://screengarden.shinyapps.io/screengardenapp/
https://github.com/CinziaK/ScreenGarden
https://github.com/CinziaK/ScreenGarden
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Programming language: R.
License: GNU GPL.
Any restrictions to use by non-academics: none.

Abbreviations
LGR: Log growth ratio; GFP: Green fluorescent protein; GBP: GFP-binding protein; FDR: False discovery rate; ID: Identifier.

Supplementary Information
The online version contains supplementary material available at https://​doi.​org/​10.​1186/​s12859-​022-​04586-1.

Additional file 1. Detailed instructions on how to run ScreenGarden data analysis using the web application or 
locally in RStudio.

Additional file 2. Example of a ‘Log file’ produced by ScreenMill’s CM-Engine. Colony size and circularity are reported 
as a list ordered by plate position and number of the plate.

Additional file 3. Example of an alternative colony size input file recognised by ScreenGarden, containing informa-
tion about the query and control names (Label), plate position (Plate, Row, Column) and colony sizes (colonysize).

Additional file 4. Example of a ‘key file’ that annotates the genotype of strains (ID) to their specific position on the 
plates.

Additional file 5. Genome-wide Synthetic Physical Interactions screens with the outer kinetochore protein Dad2 
were analysed using the ‘CalculateLGRs’ and ‘Combine2Controls’ tools of ScreenGarden. Column headers are 
described in detail in Additional file 1.

Additional file 6. Genome-wide Synthetic Physical Interactions screens with the outer kinetochore protein Nop10 
were analysed using the ‘CalculateLGRs’ and ‘Combine2Controls’ tools of ScreenGarden. Column headers are 
described in detail in Additional file 1.

Additional file 7. Comparison of SPI data analysis using ScreenGarden and ScreenMill. Since ScreenMill analysis does 
not include automatic smoothing of plate effects, ScreenMill data was smoothed manually using ScreenGarden’s 
smoothing algorithm. SPI data were compared for screens with Dad2, Nop10, Hta2 and Sec63.

Additional file 8. The data reports the results of mixture model fitting for SPI data with Nop10 using ScreenGarden’s 
‘Mixture Model’ tool. Mixture model fitting produces q-values for each mean LGR. A q-value > 0.5 indicates that SPIs 
are likely to be distributed in component 2, representing growth defects.

Acknowledgements
We would like to thank the members of the Thorpe lab for beta testing this software.

Authors’ contributions
CK and RSMH designed and developed ScreenGarden. CK performed the data analysis in this study and wrote the 
manuscript. PHT designed the research and contributed to evaluation of ScreenGarden and writing the manuscript. All 
authors have read and approved the manuscript.

Funding
This work was funded by Queen Mary University (CK’s studentship and consumables). Additional funding for this work 
(RSMH’s studentship and consumables) was provided by the Francis Crick Institute, which receives its core funding from 
Cancer Research UK (FC001183), the UK Medical Research Council (FC001183), and the Wellcome Trust (FC001183); the 
UK medical Research Council (MC_UP_A252_102). These funding bodies played no roles in the design of the study and 
collection, analysis and interpretation of data and writing the manuscript.

Availability of data and materials
All data and materials are included in the supplementary files or can be accessed via the ScreenGarden web page: 
https://​scree​ngard​en.​shiny​apps.​io/​scree​ngard​enapp/.

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

https://doi.org/10.1186/s12859-022-04586-1
https://screengarden.shinyapps.io/screengardenapp/


Page 15 of 15Klemm et al. BMC Bioinformatics           (2022) 23:60 	

Competing interests
The authors declare they have no competing interests.

Author details
1 School of Biological and Behavioural Science, Queen Mary University of London, Mile End Road, London E1 4NS, UK. 
2 Present Address: UCL Cancer Institute, University College London, 72 Huntley Street, London WC1E 6DD, UK. 

Received: 14 May 2021   Accepted: 25 January 2022

References
	1.	 Boone C, Bussey H, Andrews BJ. Exploring genetic interactions and networks with yeast. Nat Rev Genet. 2007;8:437–49. 

https://​doi.​org/​10.​1038/​nrg20​85.
	2.	 Gavin AC, Aloy P, Grandi P, Krause R, Boesche M, Marzioch M, et al. Proteome survey reveals modularity of the yeast cell 

machinery. Nature. 2006;440:631–6. https://​doi.​org/​10.​1038/​natur​e04532.
	3.	 Krogan NJ, Cagney G, Yu H, Zhong G, Guo X, Ignatchenko A, et al. Global landscape of protein complexes in the yeast Sac-

charomyces cerevisiae. Nature. 2006;440:637–43. https://​doi.​org/​10.​1038/​natur​e04670.
	4.	 Ito T, Chiba T, Ozawa R, Yoshida M, Hattori M, Sakaki Y. A comprehensive two-hybrid analysis to explore the yeast protein 

interactome. Proc Natl Acad Sci USA. 2001;98:4569–74. https://​doi.​org/​10.​1073/​pnas.​06103​4498.
	5.	 Ólafsson G, Thorpe PH. Synthetic physical interactions map kinetochore regulators and regions sensitive to constitutive 

Cdc14 localization. Proc Natl Acad Sci USA. 2015;112:10413–8. https://​doi.​org/​10.​1073/​pnas.​15061​01112.
	6.	 Dittmar JC, Reid RJ, Rothstein R. Open access SOFTWARE ScreenMill: a freely available software suite for growth measure-

ment, analysis and visualization of high-throughput screen data. BMC Bioinform. 2010;11:1–11.
	7.	 Lamprecht MR, Sabatini DM, Carpenter AE. Cell profiler: free, versatile software for automated biological image analysis. 

Biotechniques. 2007;42:71–5. https://​doi.​org/​10.​2144/​00011​2257.
	8.	 Wagih O, Parts L. Gitter: a robust and accurate method for quantification of colony sizes from plate images. G3. 2014;4:547–

52. https://​doi.​org/​10.​1534/​g3.​113.​009431.
	9.	 Bischof L, Převorovský M, Rallis C, Jeffares DC, Arzhaeva Y, Bähler J. Spotsizer: high-throughput quantitative analysis of micro-

bial growth. Biotechniques. 2016;61:191–201. https://​doi.​org/​10.​2144/​00011​4459.
	10.	 RStudio I. Easy web applications in R. 2013.
	11.	 RStudio Team. RStudio: integrated development for R. RStudio, Inc; 2015. http://​www.​rstud​io.​com/.
	12.	 Berry LK, Ólafsson G, Ledesma-Fernández E, Thorpe PH. Synthetic protein interactions reveal a functional map of the cell. 

Elife. 2016;5: e13053. https://​doi.​org/​10.​7554/​eLife.​13053.
	13.	 Perlstein EO, Deeds EJ, Ashenberg O, Shakhnovich EI, Schreiber SL. Quantifying fitness distributions and phenotypic 

relationships in recombinant yeast populations. Proc Natl Acad Sci. 2007;104:10553–8. https://​doi.​org/​10.​1073/​pnas.​07040​
37104.

	14.	 Collins SR, Schuldiner M, Krogan NJ, Weissman JS. A strategy for extracting and analyzing large-scale quantitative epistatic 
interaction data. Genome Biol. 2006;7:R63. https://​doi.​org/​10.​1186/​gb-​2006-7-​7-​r63.

	15.	 Baryshnikova A, Costanzo M, Kim Y, Ding H, Koh J, Toufighi K, et al. Quantitative analysis of fitness and genetic interactions in 
yeast on a genome scale. Nat Methods. 2010;7:1017–24. https://​doi.​org/​10.​1038/​nmeth.​1534.

	16.	 Benjamini Y, Hochberg Y, Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to 
multiple testing. J R Stat Soc B. 1995;57:289–300. https://​doi.​org/​10.​2307/​23461​01.

	17.	 Fisher RA. Statistical methods for research workers. Oliver and Boyd; 1925.
	18.	 Ólafsson G, Thorpe PH. Polo kinase recruitment via the constitutive centromere-associated network at the kinetochore 

elevates centromeric RNA. PLoS Genet. 2020;16: e1008990. https://​doi.​org/​10.​1371/​JOURN​AL.​PGEN.​10089​90.
	19.	 Ólafsson G, Thorpe PH. Synthetic physical interactions map kinetochore-checkpoint activation regions. G3 Genes Genomes 

Genet. 2016;6:2531–42. https://​doi.​org/​10.​1534/​g3.​116.​031930.
	20.	 Howell RSM, Csikász-Nagy A, Thorpe PH. Synthetic physical interactions with the yeast centrosome. G3 Genes Genomes 

Genet. 2019;9:2183–94. https://​doi.​org/​10.​1534/​g3.​119.​400117.
	21.	 Fraley C, Raftery AE. Model-based clustering, discriminant analysis, and density estimation. J Am Stat Assoc. 2002;97:611–31. 

https://​doi.​org/​10.​1198/​01621​45027​60047​131.
	22.	 Scrucca L, Fop M, Murphy TB, Raftery AE. Mclust 5: clustering, classification and density estimation using Gaussian finite 

mixture models. R J. 2016;8:289–317. https://​doi.​org/​10.​32614/​rj-​2016-​021.
	23.	 Zou H, Rothstein R. Holliday junctions accumulate in replication mutants via a RecA homolog-independent mechanism. 

Cell. 1997;90:87–96. https://​doi.​org/​10.​1016/​S0092-​8674(00)​80316-5.
	24.	 Huh WK, Falvo JV, Gerke LC, Carroll AS, Howson RW, Weissman JS, et al. Global analysis of protein localization in budding 

yeast. Nature. 2003;425:686–91. https://​doi.​org/​10.​1038/​natur​e02026.
	25.	 Sherman F. Getting started with yeast. Methods Enzymol. 2002;350:3–41. https://​doi.​org/​10.​1016/​S0076-​6879(02)​50954-X.
	26.	 Reid RJD, González-Barrera S, Sunjevaric I, Alvaro D, Ciccone S, Wagner M, et al. Selective ploidy ablation, a high-through-

put plasmid transfer protocol, identifies new genes affecting topoisomerase I-induced DNA damage. Genome Res. 
2011;21:477–86. https://​doi.​org/​10.​1101/​gr.​109033.​110.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1038/nrg2085
https://doi.org/10.1038/nature04532
https://doi.org/10.1038/nature04670
https://doi.org/10.1073/pnas.061034498
https://doi.org/10.1073/pnas.1506101112
https://doi.org/10.2144/000112257
https://doi.org/10.1534/g3.113.009431
https://doi.org/10.2144/000114459
http://www.rstudio.com/
https://doi.org/10.7554/eLife.13053
https://doi.org/10.1073/pnas.0704037104
https://doi.org/10.1073/pnas.0704037104
https://doi.org/10.1186/gb-2006-7-7-r63
https://doi.org/10.1038/nmeth.1534
https://doi.org/10.2307/2346101
https://doi.org/10.1371/JOURNAL.PGEN.1008990
https://doi.org/10.1534/g3.116.031930
https://doi.org/10.1534/g3.119.400117
https://doi.org/10.1198/016214502760047131
https://doi.org/10.32614/rj-2016-021
https://doi.org/10.1016/S0092-8674(00)80316-5
https://doi.org/10.1038/nature02026
https://doi.org/10.1016/S0076-6879(02)50954-X
https://doi.org/10.1101/gr.109033.110

	ScreenGarden: a shinyR application for fast and easy analysis of plate-based high-throughput screens
	Abstract 
	Background: 
	Results: 
	Conclusions: 

	Background
	Implementation

	Results
	Comparison of experimental and control colony sizes
	Combining two independent controls
	Quality control using ScreenGarden
	Comparing ScreenGarden and ScreenMill
	Defining cut-offs for growth inhibition

	Discussion
	Conclusion
	Yeast strains and methods
	Availability and requirements

	Acknowledgements
	References


